DBC.glm.Rd
Statistical analysis of experiments conducted in a randomized block design using a generalized linear model. It performs the deviance analysis and the effect is tested by a chi-square test. Multiple comparisons are adjusted by Tukey.
DBC.glm(
trat,
block,
response,
glm.family = "binomial",
quali = TRUE,
alpha.f = 0.05,
alpha.t = 0.05,
geom = "bar",
theme = theme_classic(),
sup = NA,
ylab = "Response",
xlab = "",
fill = "lightblue",
angle = 0,
family = "sans",
textsize = 12,
labelsize = 5,
dec = 3,
addmean = TRUE,
errorbar = TRUE,
posi = "top",
point = "mean_sd",
angle.label = 0
)
Numerical or complex vector with treatments
Numerical or complex vector with blocks
Numerical vector containing the response of the experiment. Use cbind(resp, n-resp) for binomial or quasibinomial family.
distribution family considered (default is binomial)
Defines whether the factor is quantitative or qualitative (default is qualitative)
Level of significance of the F test (default is 0.05)
Significance level of the multiple comparison test (default is 0.05)
Graph type (columns, boxes or segments)
ggplot2 theme (default is theme_classic())
Number of units above the standard deviation or average bar on the graph
Variable response name (Accepts the expression() function)
Treatments name (Accepts the expression() function)
Defines chart color (to generate different colors for different treatments, define fill = "trat")
x-axis scale text rotation
Font family
Font size
Label size
Number of cells
Plot the average value on the graph (default is TRUE)
Plot the standard deviation bar on the graph (In the case of a segment and column graph) - default is TRUE
Legend position
Defines whether to plot mean ("mean"), mean with standard deviation ("mean_sd" - default) or mean with standard error (default - "mean_se").
label angle
data("aristolochia")
attach(aristolochia)
#> The following object is masked from cloro:
#>
#> resp
#> The following object is masked from passiflora:
#>
#> trat
# Assuming the same aristolochia data set, but considering randomized blocks
bloco=rep(paste("B",1:16),5)
resp=resp/2
DBC.glm(trat,bloco, cbind(resp,50-resp), glm.family="binomial")
#>
#>
#> -----------------------------------------------------------------
#> Analysis of deviance
#> -----------------------------------------------------------------
#>
#> Null deviance 2159.834
#> Df Null deviance 79.000
#> -----
#> Treatment effects
#> Residual deviance 346.688
#> Df residual deviance 75.000
#> p-value(Chisq) 0.000
#> -----
#> Block effects
#> Residual deviance 247.739
#> Df residual deviance 60.000
#> p-value(Chisq) 0.000
#> -----
#> AIC 510.227
#>
#>
#> As the calculated p-value, it is less than the 5% significance level.The hypothesis H0 of equality of means is rejected. Therefore, at least two treatments differ
#>
#>
#> -----------------------------------------------------------------
#> Multiple Comparison Test
#> -----------------------------------------------------------------
#> trat prob SE asymp.LCL asymp.UCL .group
#> 15 15 0.00 0.00 0.00 0.00 d
#> 20 20 0.04 0.01 0.03 0.05 c
#> 25 25 0.47 0.02 0.44 0.51 b
#> 30 30 0.75 0.02 0.72 0.78 a
#> 35 35 0.54 0.02 0.50 0.57 b