ibarplot.double.Rd
invert uppercase and lowercase letters in graph for factorial scheme the subdivided plot with significant interaction
ibarplot.double(analysis)
FAT2DIC, FAT2DBC, PSUBDIC or PSUBDBC object
Return column chart for two factors
data(covercrops)
attach(covercrops)
#> The following objects are masked from covercrops (pos = 4):
#>
#> A, B, Bloco, Resp
a=FAT2DBC(A, B, Bloco, Resp, ylab=expression("Yield"~(Kg~"100 m"^2)),
legend = "Cover crops",alpha.f = 0.3,family = "serif")
#>
#> -----------------------------------------------------------------
#> Normality of errors
#> -----------------------------------------------------------------
#> Method Statistic p.value
#> Shapiro-Wilk normality test(W) 0.9758908 0.6061712
#>
#> As the calculated p-value is greater than the 5% significance level, hypothesis H0 is not rejected. Therefore, errors can be considered normal
#>
#> -----------------------------------------------------------------
#> Homogeneity of Variances
#> -----------------------------------------------------------------
#> Method Statistic p.value
#> Bartlett test(Bartlett's K-squared) 10.19232 0.2517862
#>
#> As the calculated p-value is greater than the 5% significance level, hypothesis H0 is not rejected. Therefore, the variances can be considered homogeneous
#>
#> -----------------------------------------------------------------
#> Independence from errors
#> -----------------------------------------------------------------
#> Method Statistic p.value
#> Durbin-Watson test(DW) 2.335214 0.3781148
#>
#> As the calculated p-value is greater than the 5% significance level, hypothesis H0 is not rejected. Therefore, errors can be considered independent
#>
#> -----------------------------------------------------------------
#> Additional Information
#> -----------------------------------------------------------------
#>
#> CV (%) = 2.65
#> Mean = 37.4583
#> Median = 37.45
#> Possible outliers = No discrepant point
#>
#> -----------------------------------------------------------------
#> Analysis of Variance
#> -----------------------------------------------------------------
#> Df Sum Sq Mean.Sq F value Pr(F)
#> Fator1 2 146.585000 73.292500 74.645449 4.979960e-11
#> Fator2 2 23.021667 11.510833 11.723318 2.805884e-04
#> bloco 3 2.167500 0.722500 0.735837 5.409183e-01
#> Fator1:Fator2 4 6.008333 1.502083 1.529811 2.252749e-01
#> Residuals 24 23.565000 0.981875
#>
#> -----------------------------------------------------------------
#>
#> Significant interaction: analyzing the interaction
#>
#> -----------------------------------------------------------------
#>
#> -----------------------------------------------------------------
#> Analyzing F1 inside of each level of F2
#> -----------------------------------------------------------------
#> Df Sum Sq Mean Sq F value Pr(>F)
#> bloco 3 2.168 0.723 0.7358 0.5409183
#> Fator2 2 23.022 11.511 11.7233 0.0002806 ***
#> Fator2:Fator1 6 152.593 25.432 25.9017 2.296e-09 ***
#> Fator2:Fator1: B1 2 51.165 25.583 26.0547 9.667e-07 ***
#> Fator2:Fator1: B2 2 34.427 17.213 17.5311 2.027e-05 ***
#> Fator2:Fator1: B3 2 67.002 33.501 34.1192 9.629e-08 ***
#> Residuals 24 23.565 0.982
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> -----------------------------------------------------------------
#> Analyzing F2 inside of the level of F1
#> -----------------------------------------------------------------
#>
#> Df Sum Sq Mean Sq F value Pr(>F)
#> bloco 3 2.168 0.723 0.7358 0.540918
#> Fator1 2 146.585 73.293 74.6454 4.98e-11 ***
#> Fator1:Fator2 6 29.030 4.838 4.9276 0.002054 **
#> Fator1:Fator2: A1 2 1.995 0.998 1.0159 0.377120
#> Fator1:Fator2: A2 2 15.495 7.748 7.8905 0.002325 **
#> Fator1:Fator2: A3 2 11.540 5.770 5.8765 0.008371 **
#> Residuals 24 23.565 0.982
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> -----------------------------------------------------------------
#> Final table
#> -----------------------------------------------------------------
#> B1 B2 B3
#> A1 34.5 bA 34.8 bA 35.4 cA
#> A2 37.8 aAB 36.2 bB 39.0 bA
#> A3 39.4 aB 38.9 aB 41.1 aA
#>
#>
#> Averages followed by the same lowercase letter in the column
#> and uppercase in the row do not differ by the tukey (p< 0.05 )
ibarplot.double(a)