The function performs the construction of a column chart of Dunnett's test.

bar_dunnett(
output.dunnett,
ylab = "Response",
xlab = "",
fill = c("#F8766D", "#00BFC4"),
sup = NA,
round = 2
)

## Arguments

output.dunnett

Numerical or complex vector with treatments

ylab

Variable response name (Accepts the expression() function)

xlab

Treatments name (Accepts the expression() function)

fill

Fill column. Use vector with two elements c(control, different treatment)

sup

Number of units above the standard deviation or average bar on the graph

Plot the average value on the graph (default is TRUE)

round

Number of cells

## Value

Returns a column chart of Dunnett's test. The colors indicate difference from the control.

## Examples


#====================================================
#====================================================
library(AgroR)
data(cloro)
attach(cloro)
#> The following object is masked from passiflora:
#>
#>     bloco
ylab="Number of nodules",
legend = "Stages",mcomp="sk")
#>
#> -----------------------------------------------------------------
#> Normality of errors
#> -----------------------------------------------------------------
#>                          Method Statistic   p.value
#>  Shapiro-Wilk normality test(W) 0.9548911 0.1117923
#>
#> As the calculated p-value is greater than the 5% significance level, hypothesis H0 is not rejected. Therefore, errors can be considered normal
#>
#> -----------------------------------------------------------------
#> Homogeneity of Variances
#> -----------------------------------------------------------------
#>                               Method Statistic    p.value
#>  Bartlett test(Bartlett's K-squared)  16.11086 0.02412261
#>
#> As the calculated p-value is less than the 5% significance level, H0 is rejected. Therefore, the variances are not homogeneous
#>
#> -----------------------------------------------------------------
#> Independence from errors
#> -----------------------------------------------------------------
#>                  Method Statistic   p.value
#>  Durbin-Watson test(DW)  2.047899 0.1769663
#>
#> As the calculated p-value is greater than the 5% significance level, hypothesis H0 is not rejected. Therefore, errors can be considered independent
#>
#> -----------------------------------------------------------------
#> -----------------------------------------------------------------
#>
#> CV (%) =  28.29
#> Mean Factorial =  218.35
#> Median Factorial =  185
#> Possible outliers =  No discrepant point
#>
#> -----------------------------------------------------------------
#> Analysis of Variance
#> -----------------------------------------------------------------
#>                Df     Sum Sq    Mean.Sq    F value        Pr(F)
#> Fator1          1  16160.400  16160.400  3.8772062 5.765683e-02
#> Fator2          3 116554.500  38851.500  9.3212591 1.409219e-04
#> block           4   7122.311   1780.578  0.4271966 7.878578e-01
#> Fator1:Fator2   3 452096.200 150698.733 36.1556682 2.154175e-10
#> Ad x Factorial  1  34928.100  34928.100  8.3799563 6.781309e-03
#> Residuals      32 133377.689   4168.053
#>
#>
#> Your analysis is not valid, suggests using a non-parametric test and try to transform the data
#>
#> -----------------------------------------------------------------
#> Significant interaction: analyzing the interaction
#> -----------------------------------------------------------------
#>                          Df Sum Sq Mean Sq F value    Pr(>F)
#> Fator2                    3 116554   38851  9.3213 0.0001409 ***
#> block                     4  11614    2903  0.6966 0.5999233
#> Fator2:Fator1             4 468257  117064 28.0861 4.580e-10 ***
#>   Fator2:Fator1: Plantio  1  26112   26112  6.2648 0.0176146 *
#>   Fator2:Fator1: R1+15    1  70896   70896 17.0095 0.0002467 ***
#>   Fator2:Fator1: V1+15    1 258888  258888 62.1125 5.419e-09 ***
#>   Fator2:Fator1: V3+15    1 112360  112360 26.9574 1.137e-05 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> -----------------------------------------------------------------
#> Analyzing  F2  inside of the level of  F1
#> -----------------------------------------------------------------
#>
#>                     Df Sum Sq Mean Sq F value    Pr(>F)
#> Fator1               1  16160   16160  3.8772  0.057657 .
#> block                4  11614    2903  0.6966  0.599923
#> Fator1:Fator2        6 568651   94775 22.7385 2.974e-10 ***
#>   Fator1:Fator2: IN  3  75470   25157  6.0356  0.002232 **
#>   Fator1:Fator2: NI  3 493181  164394 39.4414 7.343e-11 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> -----------------------------------------------------------------
#> Final table
#> -----------------------------------------------------------------
#>     Plantio    R1+15    V1+15    V3+15
#> IN 272.8 aA 236.6 aA 140.4 bB 304.0 aA
#> NI 170.6 bB  68.2 bC 462.2 aA  92.0 bC
#>
#>
#> Averages followed by the same lowercase letter in the column and
#> uppercase in the row do not differ by the sk (p< 0.05 )

data=rbind(data.frame(trat=paste(f1,f2,sep = ""),bloco=bloco,resp=resp),
data.frame(trat=c("Test","Test","Test","Test","Test"),
a= with(data,dunnett(trat = trat,
resp = resp,
control = "Test",
block=bloco,model = "DBC"))
#>                    Estimate     IC-lwr     IC-upr t value p-value sig
#> Test  -  INPlantio    -34.2 -148.71333   80.31333 -0.8376  0.9479  ns
#> Test  -  INV1+15     -166.6 -281.11333  -52.08667 -4.0802  0.0019   *
#> Test  -  INV3+15       -3.0 -117.51333  111.51333 -0.0735  1.0000  ns
#> Test  -  INR1+15      -70.4 -184.91333   44.11333 -1.7242  0.4041  ns
#> Test  -  NIPlantio   -136.4 -250.91333  -21.88667 -3.3405  0.0138   *
#> Test  -  NIV1+15      155.2   40.68667  269.71333  3.8010  0.0042   *
#> Test  -  NIV3+15     -215.0 -329.51333 -100.48667 -5.2655  0.0001   *
#> Test  -  NIR1+15     -238.8 -353.31333 -124.28667 -5.8484  0.0000   *

bar_dunnett(a)