polynomial2_color.Rd
Linear regression analysis for significant interaction of an experiment with two factors, one quantitative and one qualitative
polynomial2_color(
fator1,
resp,
fator2,
color = NA,
grau = NA,
ylab = "Response",
xlab = "independent",
theme = theme_classic(),
se = FALSE,
point = "mean_se",
legend.title = "Tratamentos",
posi = "top",
textsize = 12,
ylim = NA,
family = "sans",
width.bar = NA,
pointsize = 5,
linesize = 0.8,
separate = c("(\"", "\")"),
n = NA,
DFres = NA,
SSq = NA
)
Numeric or complex vector with factor 1 levels
Numerical vector containing the response of the experiment.
Numeric or complex vector with factor 2 levels
Graph color (default is NA)
Degree of the polynomial (1,2 or 3)
Dependent variable name (Accepts the expression() function)
Independent variable name (Accepts the expression() function)
ggplot2 theme (default is theme_classic())
Adds confidence interval (default is FALSE)
Defines whether to plot all points ("all"), mean ("mean"), mean with standard deviation ("mean_sd") or mean with standard error (default - "mean_se").
Title legend
Legend position
Font size (default is 12)
y-axis scale
Font family (default is sans)
width of the error bars of a regression graph.
Point size (default is 4)
line size (Trendline and Error Bar)
Separation between treatment and equation (default is c("(\"","\")"))
Number of decimal places for regression equations
Residue freedom degrees
Sum of squares of the residue
Returns two or more linear, quadratic or cubic regression analyzes.
dose=rep(c(0,0,0,2,2,2,4,4,4,6,6,6),3)
resp=c(8,7,5,23,24,25,30,34,36,80,90,80,
12,14,15,23,24,25,50,54,56,80,90,40,
12,14,15,3,4,5,50,54,56,80,90,40)
trat=rep(c("A","B","C"),e=12)
polynomial2_color(dose, resp, trat, grau=c(1,2,3))
#> Warning: NaNs produced
#>
#> ----------------------------------------------------
#> Regression Models
#> ----------------------------------------------------
#> $A
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.9333333 5.395430 0.1729859 8.661137e-01
#> x 11.9666667 1.441989 8.2987205 8.528803e-06
#>
#> $B
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 12.0833333 7.4460094 1.6227932 0.1390822
#> x 7.5416667 5.9788110 1.2613991 0.2388777
#> I(x^2) 0.3958333 0.9549306 0.4145153 0.6882023
#>
#> $C
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 13.666667 7.7064187 1.773413 0.11409087
#> x -34.861111 14.7845901 -2.357936 0.04610656
#> I(x^2) 18.833333 6.5334343 2.882609 0.02042957
#> I(x^3) -1.909722 0.7180032 -2.659769 0.02881582
#>
#>
#> ----------------------------------------------------
#> Anova
#> ----------------------------------------------------
#> $`Anova A`
#> Df SSq MSQ F p-value
#> Linear 1 8592.067 8592.0667 70.07576 1.401237e-08
#> Deviation 2 1155.600 577.8000 4.71246 1.877977e-02
#> Residual 24 2942.667 122.6111
#>
#> $`Anova B`
#> Df SSq MSQ F p-value
#> Linear 1 5900.41667 5900.41667 48.1230177 3.571320e-07
#> Quadratic 1 30.08333 30.08333 0.2453557 6.248694e-01
#> Deviation 1 150.41667 150.41667 1.2267784 2.790120e-01
#> Residual 24 2942.66667 122.61111
#>
#> $`Anova C`
#> Df SSq MSQ F p-value
#> Linear 1 7.150417e+03 7150.4167 58.317852 7.114165e-08
#> Quadratic 1 5.200833e+02 520.0833 4.241731 5.044762e-02
#> Cubic 1 1.260417e+03 1260.4167 10.279792 3.783350e-03
#> Deviation 0 4.547474e-13 -Inf -Inf NaN
#> Residual 24 2.942667e+03 122.6111
#>