barfacet.Rd
This is a function of the bar graph for one factor with facets
barfacet(
model,
facet = NULL,
theme = theme_bw(),
horiz = FALSE,
geom = "bar",
fill = "lightblue",
pointsize = 4.5,
width.bar = 0.15
)
DIC, DBC or DQL object
vector with facets
ggplot2 theme
horizontal bar or point (default is FALSE)
graph type (columns or segments)
fill bars
Point size
width of the error bars of a regression graph.
Returns a bar chart for one factor
library(AgroR)
data("laranja")
a=with(laranja, DBC(trat, bloco, resp,
mcomp = "sk",angle=45,sup = 10,family = "serif",
ylab = "Number of fruits/plants"))
#>
#> -----------------------------------------------------------------
#> Normality of errors
#> -----------------------------------------------------------------
#> Method Statistic p.value
#> Shapiro-Wilk normality test(W) 0.9475889 0.187264
#>
#> As the calculated p-value is greater than the 5% significance level, hypothesis H0 is not rejected. Therefore, errors can be considered normal
#>
#> -----------------------------------------------------------------
#> Homogeneity of Variances
#> -----------------------------------------------------------------
#> Method Statistic p.value
#> Bartlett test(Bartlett's K-squared) 4.036888 0.85378
#>
#> As the calculated p-value is greater than the 5% significance level, hypothesis H0 is not rejected. Therefore, the variances can be considered homogeneous
#>
#> -----------------------------------------------------------------
#> Independence from errors
#> -----------------------------------------------------------------
#> Method Statistic p.value
#> Durbin-Watson test(DW) 2.324604 0.2484349
#>
#> As the calculated p-value is greater than the 5% significance level, hypothesis H0 is not rejected. Therefore, errors can be considered independent
#>
#> -----------------------------------------------------------------
#> Additional Information
#> -----------------------------------------------------------------
#>
#> CV (%) = 8.69
#> MStrat/MST = 0.91
#> Mean = 182.5556
#> Median = 183
#> Possible outliers = No discrepant point
#>
#> -----------------------------------------------------------------
#> Analysis of Variance
#> -----------------------------------------------------------------
#> Df Sum Sq Mean.Sq F value Pr(F)
#> trat 8 22981.33333 2872.66667 11.41142069 2.636524e-05
#> bloco 2 33.55556 16.77778 0.06664828 9.357825e-01
#> Residuals 16 4027.77778 251.73611
#>
#> As the calculated p-value, it is less than the 5% significance level. The hypothesis H0 of equality of means is rejected. Therefore, at least two treatments differ
#>
#> -----------------------------------------------------------------
#> Multiple Comparison Test: Scott-Knott
#> -----------------------------------------------------------------
#> resp groups
#> Country orange 250.3333 a
#> NRL 193.3333 b
#> FRL 192.3333 b
#> Cleopatra 183.6667 b
#> Clove Lemon 182.3333 b
#> Clove Tangerine 180.3333 b
#> Citranger-troyer 165.3333 c
#> Sunki 155.3333 c
#> Trifoliata 140.0000 c
#>
barfacet(a,c("S1","S1","S1","S1","S1",
"S2","S2","S3","S3"))