Statistical analysis of experiments conducted in a completely randomized design using a generalized linear model. It performs the deviance analysis and the effect is tested by a chi-square test. Multiple comparisons are adjusted by Tukey.

DIC.glm(
  trat,
  response,
  glm.family = "binomial",
  quali = TRUE,
  alpha.f = 0.05,
  alpha.t = 0.05,
  geom = "bar",
  theme = theme_classic(),
  sup = NA,
  ylab = "Response",
  xlab = "",
  fill = "lightblue",
  angle = 0,
  family = "sans",
  textsize = 12,
  labelsize = 5,
  dec = 3,
  addmean = TRUE,
  errorbar = TRUE,
  posi = "top",
  point = "mean_sd",
  angle.label = 0
)

Arguments

trat

Numerical or complex vector with treatments

response

Numerical vector containing the response of the experiment. Use cbind(resp, n-resp) for binomial or quasibinomial family.

glm.family

distribution family considered (default is binomial)

quali

Defines whether the factor is quantitative or qualitative (default is qualitative)

alpha.f

Level of significance of the F test (default is 0.05)

alpha.t

Significance level of the multiple comparison test (default is 0.05)

geom

Graph type (columns, boxes or segments)

theme

ggplot2 theme (default is theme_classic())

sup

Number of units above the standard deviation or average bar on the graph

ylab

Variable response name (Accepts the expression() function)

xlab

Treatments name (Accepts the expression() function)

fill

Defines chart color (to generate different colors for different treatments, define fill = "trat")

angle

x-axis scale text rotation

family

Font family

textsize

Font size

labelsize

Label size

dec

Number of cells

addmean

Plot the average value on the graph (default is TRUE)

errorbar

Plot the standard deviation bar on the graph (In the case of a segment and column graph) - default is TRUE

posi

Legend position

point

Defines whether to plot mean ("mean"), mean with standard deviation ("mean_sd" - default) or mean with standard error (default - "mean_se").

angle.label

label angle

Author

Gabriel Danilo Shimizu, shimizu@uel.br

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

Examples

data("aristolochia")
attach(aristolochia)
#> The following objects are masked from simulate2:
#> 
#>     resp, trat
#> The following objects are masked from laranja:
#> 
#>     resp, trat
#> The following objects are masked from aristolochia (pos = 5):
#> 
#>     resp, trat
#> The following object is masked from cloro:
#> 
#>     resp
#> The following object is masked from passiflora:
#> 
#>     trat
#=============================
# Use the DIC function
#=============================
DIC(trat, resp)
#> 
#> -----------------------------------------------------------------
#> Normality of errors
#> -----------------------------------------------------------------
#>                          Method Statistic      p.value
#>  Shapiro-Wilk normality test(W) 0.9012191 1.371547e-05
#> 
#> As the calculated p-value is less than the 5% significance level, H0 is rejected. Therefore, errors do not follow a normal distribution
#> 
#> -----------------------------------------------------------------
#> Homogeneity of Variances
#> -----------------------------------------------------------------
#>                               Method Statistic       p.value
#>  Bartlett test(Bartlett's K-squared)   959.635 1.994778e-206
#> 
#> As the calculated p-value is less than the 5% significance level, H0 is rejected.Therefore, the variances are not homogeneous
#> 
#> -----------------------------------------------------------------
#> Independence from errors
#> -----------------------------------------------------------------
#>                  Method Statistic     p.value
#>  Durbin-Watson test(DW)  1.317091 0.000140062
#> 
#> As the calculated p-value is less than the 5% significance level, H0 is rejected.Therefore, errors are not independent
#> 
#> -----------------------------------------------------------------
#> Additional Information
#> -----------------------------------------------------------------
#> 
#> CV (%) =  36.13
#> MStrat/MST =  0.99
#> Mean =  36
#> Median =  36
#> Possible outliers =  69 70
#> 
#> -----------------------------------------------------------------
#> Analysis of Variance
#> -----------------------------------------------------------------
#>           Df Sum Sq    Mean.Sq  F value        Pr(F)
#> trat       4  67344 16836.0000 99.51923 3.292095e-29
#> Residuals 75  12688   169.1733                      
#> 
#> 
#> As the calculated p-value, it is less than the 5% significance level.The hypothesis H0 of equality of means is rejected. Therefore, at least two treatments differ
#> 
#> 
#> -----------------------------------------------------------------
#> Multiple Comparison Test: Tukey HSD
#> -----------------------------------------------------------------
#>    resp groups
#> 30 74.5      a
#> 35 53.5      b
#> 25 47.5      b
#> 20  4.5      c
#> 15  0.0      c
#> 
#> 
#> 
#> Your analysis is not valid, suggests using a non-parametric test and try to transform the data



#=============================
# Use the DIC function noparametric
#=============================
DIC(trat, resp, test="noparametric")
#> 
#> 
#> -----------------------------------------------------------------
#> Statistics
#> -----------------------------------------------------------------
#>      Chisq      p.chisq
#>   67.22819 8.726353e-14
#> 
#> 
#> -----------------------------------------------------------------
#> Parameters
#> -----------------------------------------------------------------
#>             test p.ajusted name.t ntr alpha
#>   Kruskal-Wallis      holm   trat   5  0.05
#> 
#> 
#> -----------------------------------------------------------------
#> Multiple Comparison Test: LSD
#> -----------------------------------------------------------------
#>    Mean        SD     Rank Groups
#> 15  0.0  0.000000 11.50000      d
#> 20  4.5  4.589844 21.53125      c
#> 25 47.5 15.654605 48.65625      b
#> 30 74.5 10.315038 69.28125      a
#> 35 53.5 21.756225 51.53125      b


#=============================
# Use the DIC.glm function
#=============================

resp=resp/4 # total germinated seeds

# the value 25 is the total of seeds in the repetition
DIC.glm(trat, cbind(resp,25-resp), glm.family="binomial")
#> 
#> 
#> -----------------------------------------------------------------
#> Analysis of deviance
#> -----------------------------------------------------------------
#>                              
#> Null deviance        1079.917
#> Df Null deviance       79.000
#> -----                        
#> Residual deviance     173.344
#> Df residual deviance   75.000
#> p-value(Chisq)          0.000
#> -----                        
#> AIC                   368.183
#> 
#> 
#> As the calculated p-value, it is less than the 5% significance level.The hypothesis H0 of equality of means is rejected. Therefore, at least two treatments differ
#> 
#> 
#> -----------------------------------------------------------------
#> Multiple Comparison Test
#> -----------------------------------------------------------------
#>    trat prob   SE asymp.LCL asymp.UCL .group
#> 15   15 0.00 0.00      0.00      0.00      d
#> 20   20 0.05 0.01      0.02      0.07     c 
#> 25   25 0.47 0.02      0.43      0.52    b  
#> 30   30 0.74 0.02      0.70      0.79   a   
#> 35   35 0.53 0.02      0.49      0.58    b